
Tensor multiplication on parallel computers

Bryan Rasmussen, bryanras@lanl.gov

January 16, 2007

Tensor multiplication is a ubiquitous task in many
scientific and engineering applications. While there
has been a great deal of research on efficient numeri-
cal methods for matrix multiplication on parallel ma-
chines, the general multiplication of arbitrary-rank
tensors with an arbitrary number of contractions has
seen less progress.

We consider a new set of C++ classes that com-
pute, store, and multiply tensors on both serial and
parallel platforms. The original, motivating applica-
tion is in computational chemistry, for example [3],
although the work should apply to many disparate
areas such as fluid mechanics, general relativity, and
quantum mechanics. (See [2].)

The code performs tensor multiplications of the
form

wa1a2...amb1b2...bn
=

ua1a2...amc1c2...cp
vb1b2...bnc1c2...cp

, (1)

where m, n, p and their associated dimensions are
completely arbitrary. The multiplication in Equation
(1) assumes the Einstein summation convention on
repeated indices, and there is no distinction between
covariance and contravariance.

We also assume that every tensor has a very com-
pact storage method called the k-index transforma-

tion, also known as the Tucker transformation. This
means that a rank-k tensor, v, has a “core tensor,”
A, and characteristic matrices z1, z2, ... zk such that
any element of the v has the form

vi1i2...ik
= z1

i1j1
z2

i2j2
· · · zk

ikjk
Aj1j2...jk

. (2)

This transformation becomes very important for min-
imizing storage and communication costs in the par-
allel algorithm. The main savings comes from the

fact that the core tensor, A, is usually known a pri-

ori from straightforward analytic expressions.

To create a parallel algorithm, we assign each pro-
cessor a different piece of the three tensors in Equa-
tion (1). We assume that each processor has enough
memory to store one row of u, v, and w simultane-
ously, where a row is the piece of the tensor corre-
sponding to a single, fixed index in the first position.

Each processor then creates only its portions of u

and v one row at a time and multiplies them together
to form rows of w. This approach has several ad-
vantages, namely that it requires very little message
passing, and it minimizes the number of redundant
formations and calculations.

One disadvantage of our approach is that it re-
quires each processor to work on a large piece of the
problem for a long time, thus increasing the proba-
bility that a single processor failure will sabotage the
computation. Another limitation is that we must in-
crease the number of processors in potentially large
step-increments in order to take advantage of larger
clusters. (The ideal number of processors is an inte-
ger multiple or divisor of the number of rows in u.)

A typical solution to these difficulties is to sub-
divide the problem and then use a scheduler to bal-
ance the workload. Unfortunately, this strategy is not
available because the smaller the subdivisions of the
problem, the more redundant formations of individ-
ual pieces of the tensors will be required. We quickly
run into a performance wall as we cut the problem
into smaller and smaller pieces—a fact that has neces-
sitated our division of the workload into large chunks
instead of more easily manageable small ones.

In other words, the current approach is a very good
practical, generic algorithm for parallel tensor multi-

1



plication. Despite its simplicity (or perhaps because
of it), the code seems to be very robust, efficient, and
scalable.

Consider the following results on the DataStar

IBM Power4 computer at the San Diego Supercom-
puting Center. We experiment with the multiplica-
tion of two rank-4 tensors of equal dimensions dimen-
sions . The tensors descend from k-index transfor-
mations where the core tensors consists of of all ones,
and the characteristic matrices all have 5 columns of
uniform random numbers. The theoretical problem
size therefore increases with the square of the num-
ber of rows, Nu. Figure 1 shows computation time
as a function of Nu. Each line represents a constant
number of processors.

The tensor classes are still under active develop-
ment, particularly with regard to the k-index trans-
formation. Through judicious storage of partial cal-
culations, it is possible to reduce the complexity of
Equation (2) to Nk+1, where N is the largest dimen-
sion of any of the three tensors. The näıve way of
doing this often leads to temporary storage require-
ments that exceed the memory available to any cur-
rent processor, and indeed to any processor likely to
be produced in the next 20 years.

In theory, we can circumvent this restriction by fus-
ing nests of loops, but this is a complicated process
for arbitrary-rank tensors. Other research groups
have developed algorithms for generating code auto-
matically to suit specific requirements and platforms
[1]. We aim instead for a more general approach that
may not be optimum but still allows for increased
productivity for practical problems. Our near-term
goal is an efficient, parallel, arbitrary-dimensional im-
plementation of k-index transformation and tensor
multiplication that will make possible a wide variety
of new calculations with only a simple set of C++
classes.

References

[1] G. Baumgartner, A. Auer, D. E. Bernholdt,
A. Bibireata, V. Choppella, D. Cociorva, X. Gao,
R. J. Harrison, S. Hirata, S. Krishnamoorthy,
S. Krishnan, C.-C. Lam, Q. Lu, M. Nooijen,

10
2

10
0

10
1

10
2

Rows of u and v

T
im

e 
(s

)

16

16, not
mem. eff

128

64

512

256

64, not
mem. eff

10
1

10
2

10
1

10
2

10
3

Rows of u and v

T
im

e 
(s

) 32 Processors

512 Processors

256 Processors

Figure 1: Computation time vs. Nu for Nu × 16 ×

16×16 (top) and Nu×32×32×32 (bottom). Scaling
appears to be nearly perfect over the ranges studied.
The lines labeled “not mem. eff” refer to a capability
of the code to trade computation time for memory.
This mode will not be practical for most applications
due to memory constraints.

2



R. M. Pitzer, J. Ramanujam, P. Sadayappan,
and A. Sibiryakov. Synthesis of high-performance
parallel programs for a class of Ab Initio quan-
tum chemistry models. Proceedings of the IEEE,
93(2):276–292, February 2005.

[2] A. J. McConnell. Applications of Tensor Analysis.
Dover, New York, 1957.

[3] A. P. Rendell, T. J. Lee, and R. Lindh. Quan-
tum chemistry on parallel computer architectures:
Coupled-cluster theory applied to the bending po-
tential of fulminic acid. Chemical Physics Letters,
194:84–94, 1992.

3


